Google Scholar. See below for paper highlights. 
A unified derivative-like dopaminergic computation across valences 
  Mijoo Park, Jongwon Yun, Hogyu Choi, HyungGoo R. Kim 
Biorxiv
Competitive integration of time and reward explains value-sensitive foraging decisions and frontal cortex ramping dynamics 
  Michael Bukwich†,  Malcolm G. Campbell†, David Zoltowski, Lyle Kingsbury,  Momchil S. Tomov, Joshua Stern,  HyungGoo R. Kim , Jan Drugowitsch, Scott W. Linderman, Naoshige Uchida 
 Neuron (2025)
Multi-timescale reinforcement learning in the brain 
  Paul Masset, Pablo Tano,  HyungGoo R. Kim , Athar N. Malik, Alexandre Pouget & Naoshige Uchida 
 Nature (2025)
A Normative Framework Dissociates Need and Motivation in Hypothalamic Neurons 
  Kyu Sik Kim†,  Young Hee Lee†,  Jong Won Yun†, Yu-Been Kim†, Ha Young Song, Joon Seok Park, Sang-Ho Jung, Jong-Woo Sohn, Ki Woo Kim,  HyungGoo R. Kim* , Hyung Jin Choi* 
 Science Advances (2024)          Press (selected):  동아사이언스 
Distinct roles of the orbitofrontal cortex, ventral striatum, and dopamine neurons in counterfactual thinking of decision outcomes 
  Mengxi Yun, Masafumi Nejime, Takashi Kawai, Jun Kunimatsu, Hiroshi Yamada,  HyungGoo R. Kim, Masayuki Matsumoto 
 Science Advances (2023)
Prior expectation enhances sensorimotor behavior by modulating population tuning and subspace activity in the sensory cortex 
  JeongJun Park†, Seolmin Kim†, HyungGoo R. Kim, Joonyeol Lee 
 Science Advances (2023)
A neural mechanism for detecting object motion during self-motion 
   HyungGoo R. Kim , Dora E. Angelaki, Greg DeAngelis 
 eLife (2022)
The role of state uncertainty in the dynamics of dopamine 
  JG Mikhael†, HR Kim†, N Uchida, SJ Gershman 
 Current Biology (2022)        [video] 
A unified framework for dopamine signals across timescales 
  HR Kim†, AN Malik†, JG Mikhael, P Bech, I Tsutsui-Kimura, F Sun, Y Zhang, Y Li, M Watabe-Uchida, SJ Gershman, N Uchida* 
 Cell (2020), 183 (6), 1600-1616        [video]          Press (selected):   data @ DANDI archive 
Gain modulation as a mechanism for coding depth from motion parallax in macaque area MT 
  HGR Kim, DE Angelaki, GC DeAngelis 
 Journal of Neuroscience (2017), 37 (34), 8180-8197
A simple approach to ignoring irrelevant variables by population decoding based on multisensory neurons 
  HR Kim, X Pitkow, DE Angelaki, GC DeAngelis 
 Journal of neurophysiology (2016), 116 (3), 1449-1467
The neural basis of depth perception from motion parallax 
  HR Kim, DE Angelaki, GC DeAngelis 
 Philosophical Transactions of the Royal Society B Biological Sciences (2016), 371
A functional link between MT neurons and depth perception based on motion parallax 
  HR Kim, DE Angelaki, GC DeAngelis 
 Journal of Neuroscience (2015), 35 (6), 2766-2777
A novel role for visual perspective cues in the neural computation of depth 
  HR Kim, DE Angelaki, GC DeAngelis 
 Nature Neuroscience (2015), 18 (1), 129-137          Press (selected):  News & Views 
Joint representation of depth from motion parallax and binocular disparity cues in macaque area MT 
  JW Nadler, D Barbash, HR Kim, S Shimpi, DE Angelaki, GC DeAngelis 
 Journal of Neuroscience (2013), 33 (35), 14061-14074
Modulation of V1 spike response by temporal interval of spatiotemporal stimulus sequence 
  T Kim, HGR Kim, K Kim, C Lee 
 PLoS One (2012), 7 (10), e47543
Trial-to-trial variability of spike response of V1 and saccadic response time 
  J Lee, HR Kim, C Lee 
 Journal of neurophysiology (2010), 104 (5), 2556-2572
Dopamine neurons flexibly compute reward proximity during foraging competition 
  Rin Wang, SeungYub Lee, HyungGoo R. Kim 
KSBNS (2025)
Projection-specific diversity of dopaminergic activity under aversive situations 
  Mijoo Park, Jihye Yang, HyungGoo R. Kim 
KSBNS (2025)
Versatile visual stimulation for awake mice in ultra-high field fMRI reveals diverse patterns in visual cortex 
  SeungYub Lee, Geun Ho Im, Sanghan Choi, Seong-Gi Kim, HyungGoo R. Kim 
KSBNS (2025)
Dopamine activity in the tail of striatum predicts avoidance behaviors in complex threatening situations 
  Nawoon Kwon, HyungGoo R. Kim 
KSBNS (2025)
Dopaminergic activities in the striatal subregions show distinct representations but common learning mechanisms 
  Jihye Yang, Mijoo Park, HyungGoo R. Kim 
KSBNS (2025)
An active avoidance task in augmented reality to investigate responses to visual fear memory 
   Nawoon Kwon , HyungGoo R. Kim 
Korean Society For Cognitive and Biological Psychology conference (2025)
Flexible computation of reward proximity in dopamine neurons 
   Rin Wang  ,  SeungYub Lee ,  Jong Won Yun,  Hoyeon Jang  ,HyungGoo R. Kim 
Korean Society For Cognitive and Biological Psychology conference (2025)
A derivative-like computation in dopaminergic activity during aversive situations 
   Mijoo Park ,  Jong Won Yun, Hogyu Choi ,HyungGoo R. Kim 
KSBNS (2024), SFN (2024)
Derivative nature of dopamine processing is manifested by first-time teleport in virtual reality 
   Hoyeon Jang  ,HyungGoo R. Kim 
KSBNS (2024)
Probe tracking and spike alignments 
   Jong Won Yun 
KSBNS (2024)
Diversity of lateral habenula neurons in reward and aversive processing 
   Jong Won Yun , HyungGoo R. Kim 
KSBNS (2024)
Distinct Integration of Opposite Valences in Striatal Dopamine Signals 
   Jihye Yang ,  Mijoo Park , HyungGoo R. Kim 
KSBNS (2024)
A brain-wide investigation of the neural substrates of associative learning 
   SeungYub Lee , Geunho Lim, SeongGi Kim, HyungGoo R. Kim 
KSBNS (2024)
A choice task to investigate the neural mechanism of selection among distributed and discounted reward options 
   Ben Dougen , HyungGoo R. Kim 
KSBNS (2024)
A derivative-like computation in dopaminergic activity during aversive situations 
   Mijoo Park ,  Jong Won Yun, Hogyu Choi ,HyungGoo R. Kim 
Korean Society For Cognitive and Biological Psychology conference (2024)
A derivative computation of dopamine circuit facing positive and negative valences 
  HyungGoo R. Kim 
KSMCB (2023), Kavli Frontiers of Science Symposium (2024)
A Normative Framework Dissociates Need and Motivation in Hypothalamic Neurons 
  Hyung Jin Choi, Kyu Sik Kim, Young Hee Lee, Yu-Been Kim,  Jong Won Yun, Ha Young Song, Joon Seok Park, Sang-Ho Jung, HyungGoo R. Kim 
SfN (2023)
Dynamics of dopaminergic activity in fear learning and avoidance behaviors 
   Mijoo Park, Hogyu Choi, HyungGoo Kim  
KSBNS (2023)
Reward processing in lateral habenula neurons using virtual reality track 
   Jongwon Yun and HyungGoo Kim  
KSBNS (2023)
Reinforcement learning at multiple timescales in biological and artificial neural networks 
  Paul Masset†, Pablo Tano†, Athar N. Malik†,  HyungGoo R. Kim† , Pol Bech, Alexandre Pouget, Naoshige Uchida 
Cosyne 2023
Who will win the race? A novel dynamic competition task in virtual reality 
   Siyoung Choi, Lumi Lee, HyungGoo R. Kim*  
KSBNS 2022
Mice efficiently learn to escape a place associated with electric shock in virtual reality 
   Hogyu Choi, HyungGoo R. Kim*  
KSBNS 2022
A diversity of discounting horizons explains ramping diversity in dopaminergic neurons 
  Paul Masset†, Athar N. Malik†,  HyungGoo R. Kim†, Pol Bech, Naoshige Uchida* 
Cosyne 2021 (poster)
Diversity of discounting horizons explains ramping diversity in dopaminergic neurons 
  Paul Masset†, HyungGoo Kim†, Athar  Malik†, Pol Bech, Naoshige Uchida* 
 Biological and Artificial Reinforcement Learning workshop , NeurIPS 2020
A derivative-like computation in the dopamine reward prediction error signals  
  HR Kim,  N Uchida 
Cosyne 2019 (oral presentation)
Near-optimal linear decoding for marginalization: application to heading estimation 
  HR Kim, X Pitkow, R Sasaki, DE Angelaki, GC DeAngelis 
Cosyne 2014 (poster)
We provided a novel functional role for neurons with incongruent tuning for multiple depth cues, detecting moving objects during self-motion.
HyungGoo R. Kim , Dora E. Angelaki, Greg DeAngelis

We provided a normative explanation of why dopamine ‘ramps’ up in certain situations. Intriguingly, the same approach accounts for a dopamine ‘bump’, which happens when state uncertainty decreases within a trial.
JG Mikhael†, HR Kim†, N Uchida, SJ Gershman
Highlighted by Whittington & Behrens and Morita & Kato

We demonstrated that the brain computes teaching signals in a way that truly resembles the one used in a machine learning theory.
HR Kim†, AN Malik†, JG Mikhael, P Bech, I Tsutsui-Kimura, F Sun, Y Zhang, Y Li, M Watabe-Uchida, SJ Gershman, N Uchida*

We showed the mechanisms of depth computation based on extra-retinal response gain modulation.
HGR Kim, DE Angelaki, GC DeAngelis
Journal of Neuroscience (2017), 37 (34), 8180-8197

We provided a novel neural computation for performing marginalization.
HR Kim, X Pitkow, DE Angelaki, GC DeAngelis
Journal of neurophysiology (2016), 116 (3), 1449-1467

We reviewed recent findings in the neural basis of depth perception from motion parallax and provided future directions.
HR Kim, DE Angelaki, GC DeAngelis
Philosophical Transactions of the Royal Society B Biological Sciences (2016), 371

Single neurons in the visual cortex are sensitive to depth from motion parallax, and their activity is correlated with perceptual decision.
HR Kim, DE Angelaki, GC DeAngelis
Journal of Neuroscience (2015), 35 (6), 2766-2777

We found that single neurons in the visual cortex can encode using a large-field background motion (dynamic perspective cues)
HR Kim, DE Angelaki, GC DeAngelis
Nature Neuroscience (2015), 18 (1), 129-137